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ABSTRACT

This report presents the results of an experimental study of

the stress-strain relation of annealed 2S aluminum when subjected to

compression impact. Two methods of securing a dynamic stress-strain

curve are considered; namely from the measurement of impact stress

as a function of maximum plastic strain and impact stress as a function

of the impact velocity. The dynamic stress-strain curves obtained by

these methods lie considerably above the static curve. The elevation

in streos of the dynamic relations above the static relation increases

progressively from zero at the elastic limIt to about 20 per cent at

a strain of 4.5 per cent. However, the two dynamic relations are not

coincident which indicates that the behavior of the material cannot

be described by a single stress-strain curve for all impact velocities.

A family of stress-strain curves which differ slightly from e Ii other

and which depend upon the final strain is postulated in order to cor-

relate both sets of data adequately.

iv



INTRODUCTION

The behavior of metals and alloys under dynamic loading condi-

tions has received considerable attention in recent years (1-6)*. It is

found that in the plastic range, the stress for a given strain is increased

when the rate of loading is increased. Taylor and Whiffin (7, 8) have

found that the strengths of annealed copper and steel under impact condi-

tions are increased above the static values. Habib (9) has shown that in

compression impact tests on annealed copper, the stress for a given strain

is somewhat greater than the static stress at the same strain. The results

of an investigation by Clark and Wood (10) indicate that the ultimate ten-

sile strength of all the materials tested is greater under dynamic condi-

tions than under static conditions.

However, the interpretation of many of the previous investigations

in terms of elevated stress-strain relations is questionable as pointed out

by Clark and Duwez (6) and Lee and Wolf (11). Furthermore, few tests have

been performed in which the complete stress-strain relation followed by a

material during high-speed dynamic loading could be accurately determined.

Kolsky (12) has performed tests on copper and lead in which the stress-

strain relation under very high rates of loading was determined. The results

indicate that the stress for a given strain at very high loading rates is

equal to about twice the stress under static conditions. However, it is

difficult to interpret the results of this investigation since the instan-

taneous distribution of stress in the specimen may not be simple due to

the shape of the specimen and possible boundary constraints acting upon

it.

The present investigation makes use of an experimental technique

which is believed to provide a basis for the interpretation of the measure-

ments obtained in terms of the stress-strain relation of a material under

impact conditions with considerably greater assurance than has been here-

tofore possible. The technique used to accomplish this is as follows:

A compression stress is suddenly applied to one end of a long cylindrical

specimen by longitudinal impact with an elastic anvil bar of the same

*Numbers in parentheses refer to the references listed at the end of this
report.



diameter as the specimen. The stress-time relation at the impact end of

the specimen and the plastic strain distribution in the specimen are meas-

ured for various known impact velocities. The theory of plastic wave

propagation in long, thin bars, developed by von KArmAn (13, 14), is used

to deduce the stress-strain curve of the material from these measurements

and to describe the deformation process in the specimen during impact.

In the present paper, this technique is used to determine dynamic stress-

strain relations for annealed 2S aluminum.



EQUIPMENT

The compression impact tests were made with the vertical impact

machine shown in Fig. 1, which was described in a previous report (15).

Briefly, the features of this machine are as follows: A stationary tobin-

bronze anvil bar of the same diameter as the specimen is held vertically

in a central position between the rails of the machine by means of a guard

tube and expendable spacer. An annealed copper cylinder positioned between

the lower end of the anvil bar and a fixed base serves to absorb most of

the impact energy in the anvil bar by plastic deformation. Since a slight

misalignment between the anvil bar and the specimen may occur, the top

end of the anvil bar is provided with a 19-inch radius convex spherical

surface to prevent initial impact with the corner of the specimen.

When the specimen impacts the anvil bar, a series of compression

strains are propagated through the specimen, and an elastic compression

wave is propagated through the anvil bar. Thus, any change in stress at

the interface between the anvil bar and specimen is propagated through

the anvil bar at the elastic wave velocity. The length of the specimen

is much less than the length of the anvil bar; hence, the time required

for the first reflecting wave from the lower end of the anvil bar to reach

the interface is greater than the time required for complete unloading

of the interface by the waves in the specimen. Thus, the interface be-

tween the anvil bar and specimen is always unloaded by waves reflected

from the free end of the specimen; and consequently, all complex reflec-

tions from the lower end of the anvil bar need not be considered.

The hammer, which slides on the two vertical rails, is provided

with a central hole through which the guard tube may pass. Twenty rubber

bands 3/8 inch thick and one inch wide, attached to the hammer and frame

of the machine, serve as a means for accelerating the hammer to the de-

sired impact velocity. The specimen is held centrally in the hammer by

means of a lucite shear disk shrunk onto the bar and clamped in the hammer.

The shear disk strikes the top of the guard tube just prior to the impact

of the specimen on the anvil bar in such a manner that the specimen is

released from the shear disk and impacts the anvil bar while it is free

from any constraints due to the accelerating mechanism. The hammer con-

tinues downward, passing around the guard tube, and is decelerated by

means of four vertical friction brakes.

3
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The velocity of the hammer, and, hence, the specimen impact veloc-

ity, is determined by measuring the -time to travel between three fixed points

near the position of impact. This is accomplished by causing electrical con-

tacts to be made at these three points as the hammer passes them, and the

signals so produced are recorded on a cathode-ray oscillograph together

with an appropriate time calibration trace.

Impact velocities less than 19 ft/sec cannot be accurately deter-

mined in the vertical impact machine. For this reason, tests at impact

velocities lower than 19 ft/sec were performed by supporting the specimen

in a horizontal position as a pendulum by means of six wires attached at

two positions along the specimen. The anvil bar was supported in a hori-

zontal position such that the specimen when released from a given height

centrally impacted the anvil bar at the minimum point in the swing.

The stress as a function of time at the interface between the

anvil bar and specimen is measured during impact by means of SR-4 strain

gages cemented to the anvil bar at a position 3 inches from the interface.

The strain gages are connected to a suitable recording system employing

a single smeep cathode-ray oscilloscope and recording camera. Means

for introducing known resistance changes in the strain gage circuit aro

provided in order to calibrate the stress axis of the records, and

appropriate oscillators provide the required time calibrations.

The plastic strain in the specimen after impact is determined

with a comparator ruling machine. This machine is used for the purpose

of marking the specimen at various intervals along its length with fine

scratches before testing and to measure the change in diameter at these

positions produced by the impact. The difference between the diameter

at any position before and after impact divided by the original diameter

is the permanent circumferential plastic strain. The permanent longi-

tudinal plastic strain is equal to twice the circumferential plastic

strain since for the maximum strains reached in these experiments (about

5 per cent), no volume changes are produced. This fact was established

by static tests in which both circumferential and longitudinal strains

were measured.

The comparator ruling machine consists of a sliding carriage

which may be accurately positioned along the entire length of a station-

ary specimen. A scratching devide, a low-power microscope, and a diameter
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comparator are mounted on the carriage. The scratching device consists

of a stmple mechanism on which a rigid knife blade is mounted, and this

is used to make reference scratches on the specimen. The low-power micro-

scope is equipped with an eyepiece containing cross hairs which permit

the accurate positioning of the carriage with respect to any one of the

scratches along the specimen. The diameter comparator consists of two

knife edges in conjunction with a dial indicator for measuring the diam-

eter of the specimen.



jES PROCEDURE AND EXPERIMENTAL RESULTS

Preparation of fmpa-t Pest Specimens

The specimens used in this investigation were 1/2 in.-diameter

extruded 2S aluminum bars. The test specimens were cut from the extruded

bars and machined to a length of 23 or 46 in, After machining, the speci-

mens were annealed in a special furnace at 670°F for two hours and furnace-

cooled to room temperature. The temperature gradient along the specimen

length was less than 120 F.

Static Compression and Tension Tests

Static compression and tension tests were performed in a 150;000 lb

Olsen Universal Testing Machine having a least reading of 1 lb (corresponding

to a stress of approximately 19 lb/in.2 in the gage section of the test

specimen). The machine was recently calibrated and showed an error of

less than 0.75 per cent. The static compression specimens shown in Fig. 2

were machined from the impact specimens. Eccentric loading was reduced

by placing spherical loading blocks at each end of the compression test

specimen.

Three tests were performed in which the plastic longitudinal

and circumferential strain were measured. A given load was applied to the

test specimen and maintained for a period of 20 min or until equilibrium

was reached. The load was then removed and the plastic strain in the

specimen was measured. The longitudinal strain was determined by measur-

ing the change in the distance between pairs of scratched lines on two I

opposite sides of the test specimen. This change in distance was deter-

mined by means of a filar eyepiece and a low-power microscope. The cir-

cumferential strain was determined by measuring the change in diameter

of the test specimen. The change in diameter divided by the original

diameter is the circumferential plastic strain, The longitudinal plastic

strain is the circumferential strain divided by Poisson's ratio which

is assumed to be equal to 0.5 for plastic flow. The longitudinal plastic

strain could be determined to within 0.0004 in./in. by both methods. A

comparison was made between the stress-strain relations obta-'ned by the

two methods. The comparison indicates that the stress-strain relations

obtained by each method are the same within the accuracy of measurement.

*The mean stress-itrain curve up to 10 per cent strain, corrected for

7
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elastic recovery upon removal of the load, is shown in Fig. 3 by the upper

curve denoted "compression."

Two continuous loading static compression tests were performed

using SR-4 resistance sensitive wire gages to measure the circumferential

strain. The circumferential strain could be determined to within +2.3

per cent. The longitudinal strain is determined from the equation

+ 
(1 )

where 6 L is the longitudinal strain,

6c is the circumferential strain,

-V is Poisson's ratio for plastic flow,

r is the elastic Poisson's ratio,

O* is the compressive stress, and

E is Young's modulus.

The mean static stress-strain curve for the two tests up to 1 per cent

strain is shown in Fig. 3 by the lower curve denoted "compression."

Four static tension tests were performed to determine accurately

the stress-strain relation at low strain values. The static tension speci-

men is shown in Fig. 2. The strain in the tension specimen was determined

with the use of SR-4 resistance-sensitive wire gages and a Holz extenso-

meter having a least reading of 0.000025 in./in. The mean stress-strain

curve for the static tension tests is shown in Fig. 3. The lover curve

marked "tension" was obtained with the SR-4 gages, while the upper curve

marked "tension" was obtained with the Holz extensometer.

A comparison of the static stress-strain relations obtained by

the above methods indicates that for the purpose of this investigation,

the longitudinal strain can be accurately determined from circumferential

strain measurements.

Determination of the Velocities of Elastic Waves

The velocities of elastic waves in the specimen and in the tobin-

bronze anvil bar were determined in order to compute the relations between

the strain waves in the specimen and the anvil bar. The elastic wave

velocities were determined by measuring the resonance frequency of the

bars in longitudinal vibration. The procedure of the previous investi-

gation (15) was followed.
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The rebuhs of the determination of the vel-ities of propagation

of elastic waves for the materials used in this investigation are given

in Table I. The resonance frequencies are given for the second and third

modes of vibration. The elastic wave velocities are computed for each

test, and the average velocity in each material is also given. Young's

modulus of each material is computed from the average elastic wave veloc-

ity and the mass density,/* . The value of /a given for each material

in Table I is an average of three densities obtained by weighing a known

volume of the material. It is estimated that the accuracy in the deter-

mination of elastic wave velocities is within ±0.6 per cent. The deviation

of values of elastic wave velocities from the mean value is less than 0.7

per cent.

Compression Impact Tests

A series of tests was made to determine the relations between

the compression stress, V., at the impact end of the specimen, the

plastic strain distribution in the specimen after impact, and the particle

velocity, v,., imparted to the specimen at the impact end. The particle

velocity, V1, at the impact end of the specimen differs from the impact

velocity) V0 , since the acoustic impedance of the anvil bar is finite.

The particle velocity, vl, is given in terms of measured quantities by

where V0 is the velocity of impact,

G" is the compression stress at the interface,

/01 is the mass density of the anvil bar, and

c& is the velocity of propagation of an elastic wave in the anvil
0
bar.

The results of the compression impact tests are summarized in

Table II. The plastic strain distribution in the specimen after impact

was determined for most of the tests. The maximum plastic strain near

the impact end of the specimen for these tests is also given in Table II.

Impact velocities from 19.2 to 125 ft/sec were obtained in the vertical

impact machine. Impact velocities from 3.15 to 15.9 ft/sec were obtained

by supporting the specimen horizontally as a pendulum. The points repre-

senting the particle velocity, vl, as a function of maximum compression
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Table I

ELASTIC WAVE VELOCITIES AND MODULI OF ELASTICITY

Resonance Elastic Wave Modulus of
Test Length Frequency Velocity El4sticity

Number in. Mode Cycles/sec in./see 1ob lb/in.2

Determinations on Annealed 2S Aluminum

/ = 2.54 x lO- 4 lb sec2/in. 4

1 48 2 4076 195,600
2 48 2 4062 195,000
3 48 3 6154 196,900
4 48 2 4o84 196,000
5 47 31/32 2 4065 195,000
6 47 31/32 2 4060 194,800
7 47 31/32 p 4o6o 194,800
8 47 31/32 3 6110 195,400

Average 195,400 9.71

Determinations on Anvil Bar

(tobin bronze)

7.85 x 10 4 lb see2/in. 4

9 87 13/16 2 1587 139,200
10 87 13/16 2 1589 139,600
11 87 13/16 3 2387 139,700
12 87 13/16 3 2391 139,900
13 87 13/16 2 1585 139,100

Average 139,500 15.2
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Table II

RESULTS OF COMPRESSION IMPACT TESTS

Maximum
Maximum Velocity Maximum Permanent

Specimen Stress of Impact Particle Velocity Strain
Number l0 3 lb/in.2  ft/sec ft/sec per cent

20A 1.30 3.15 2.16
21C 1.82 4.50 3.12
20B 2.43 6.21 4.36
200 2.78 8.00 5.88
20D 2.90 9.82 7.61
21B 3.23 10.0 7.54
40A 3.35 12.4 9.83
40B 3.84 14.6 11.6 --
6A 4.12 16.8 13.6 0.30
5A 4.17 16.8 13.6 0.35

21A 4.21 15.9 12.7 --
19F 4.65 19.2 15.7 0.25
5F 5.07 19.7 15o8 0.35

22C 5.23 25.3 21.3 o.45
5E 5.74 26.6 22.2 0.50

22D 5.81 29.9 25.5 0.55
19E 5.87 31.1 26.6 0.70
23A 6.23 33.2 28.5 0.70
19D 6.36 37.6 32.8 0.90
23B 6.68 38.2 33.1 0.90
4E 7.45 43.9 38.2 1.10
4D 7.52 45.8 40.1 1.10
4c 7.56 44.8 39.0 1.10
4B 7.58 44.3 38.5 1.10
4F 7.6o 45.4 39.6 1.05
4A 7.65 44.9 39.1 1.10
IA 7.68 44.5 38.6 1.20
1B 8.22 52.0 45.7 1.45
1C 8.82 58.2 51.5 1.65
1D 9.39 67.1 60.0 1.90
5D 9.48 71.6 64.4 2.05
1E 9.94 70.8 63.3 2.20
1F 9.98 76.0 68.4 2.35

35A 10.4 80.0 72.1 2.65
35B 10.6 87.5 79.4 2.85
17E 11.5 97.0 88.3 3.20
18A 11.8 98.5 89.5 3.40
18B 12.2 103 93.9 3.65
19A 12.4 122 113 3.85
18C 12.5 1il 102 4.O0
18D 12.8 115 106 4.15
18E 13.0 123 113 4.65
18F 13.4 125 115 4.80
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stress, G"i at the impact end of the 3pecimen are plotted in Fig. 4.

The points representing maximum compression stress, QlI, as a function

of the measured strain, &L, near the impact end of the specimen are
plotted in Fig. 5. The strains are corrected for the elastic recovery

upon removal of the load. A tracing of a typical record of stress vs.

time at the impact end of the specimen is shown in Fig. 6.

The stress-strain relation exhibited by the material may be

deduced rather simply from the experimentally determined C' versus

relation if the following assumptions are made. First, it is assumed

that the stress-particle velocity relationship during loading follows

this curve continuously up to the point corresponding to the given impact

stress. As is discussed later, however, this relation may only represent

the locus of the terminal points of a number of distinct stress-particle

velocity curves which depend upon the impact stress. Second, it is

assumed that the kinetic energy and shear stresses associated with the

lateral motion of the particles of the specimen can be neglected. The

stress-strain relation obtained under these assumptions will later be

compared with other experimental results to determine the validity of

these assumptions,

Under these assumptions, the strain corresponding to a given

stress may be expressed in terms of a definite integral which depends

upon the slope of the stress-particle velocity relation up to the given

stress. Thus, the strain, 6l, at the impact end of the specimen corres-

ponding to a given impact stress, U', may be expressed in terms of the

experimental Ojversus v1 relation by

d6f (3)

The slope of the versus v]. curve shown in Fig. 4 is determined at

conveniently located points, and the 61 versus relation is computed

numerically using Equation 3. This stress-strain relation is shown in

Fig. 7 by the curve designated as stress-velocity measurements. The

static stress-strain curve and the stress-strain relation, Tl versus

6 1) determined from impact stress and measured plastic strain are
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shown for comparison. The latter is designated by the curve, stress-

plastic strain measurements.

The stress-strain curve deduued from stress-velocity measure-

ments is somewhat different from the curve determined from stress-measured

strain. Thus, for a given stress, the strain deduced from stress-velocity

measurements with the theory of plastic wave propagation is less than the

measured strain after impact. However, both of these stress-strain rela-

tions lie considerably above the static stress-strain relation. Thus,

the experimental results indicate that under these impact conditions,

the excess of the stress at a given strain over the static stress at the

same strain increases progressively from zero at the elastic limit to

about 20 per cent at a strain of 4.5 per cent.

Moderate Loading Rate Tests

A further series of tests performed at moderate strain-rates

indicates that for this material, the relatively large increase in stress

for a given strain under impact conditions is associated only with the

extremely high loading rates accompanying impact.

The moderate loading rate tests were performed in a rapid-load

testing machine by manipulating the load actuating mechanism in such a

manner that a nearly constant rate of strain was obtained. The specimens

were the same as the static-tension specimens shown in Fig. 2. The load

acting on the specimen was measured by means of a dynamometer employing

type AB-14, SR-4 strain gages with suitable temperature compensation.

The strain in the specimen was measured by means of an extensometer em-

ploying similar SR-4 strain gages. The load and the strain were recorded

on photographic paper by a recording oscillograph. Timing lines at inter-

vals of 0.1 sec were projected onto the test record to provide a time base.

The stress could be determined to within ±1.5 per cent and the strain to

within ±1 per cent. Two loading rates were used. These loading rates

corresponded to strain rates of 0.011/min and 0.040/min. The stress-strain

curves for the two rates are shown in Fig. 8, together with the static

stress-strain curve. These results show that no significant changes in

the stress-strain curve are produced by moderate loading rates.
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Lagrange Diagram

The process of wave propagation in the specimen can be deduced

from a stress-strain relation of the material and represented in a Lagrange

or position-time diagram. The stress, strain, and particle velocity are

determined as functions of position and time from this diagram. Thus, the

stress-time and strain-position relations deduced by means of a Lagrange

diagram from the stress-strain relation can be compared with the experi-

mentally determined relations. The dynamic stress-strain curve deduced

from maximum stress-impact velocity measurements was used in constructing

such a Lagrange diagram. It is assumed that the stress-strain path during

loading follows this stress-strain relation and upon unloading follows the

normal elastic hysteresis relation. The theory and graphical solutions

for strain propagation as developed by von KArmAn, Bohnenblust, Hyers,

and Charyk (16, 17) were used in constructing the Lagrange diagram shown

in Fig. 9. The details of the method of constructing a Lagrange diagram

from a stress-strain relation are given in the appendix.

The Lagrange diagram was constructed for the maximum impact

stress, 13 ,4o0 lb/in.2 , employed in the impact tests. The diagram

consists of three regions; namely, a plastic region, an elastic hysteresis

region, and the region representing the unloaded state ahead of the initial

elastic wave front. The heavy irregular line represents the boundary

between the plastic and hysteresis regions for the maximum velocity of

impact. The lighter lines indicate the appropriate characteristics in

the Lagrangean plane. The diagram includes the portion of the anvil bar

on which the strain gages are mounted so that the stress-time relation at

the gages may be determined and compared with the experimental measurements.

The line, x = 0, represents the interface between the specimen and anvil

bar. Similar Lagrange diagrams were also constructed for impact stresses

of 9,500 lb/in.2 , 7,500 lb/in.2 , and 3,850 lb/in.2  The plastic hysteresis

boundary lines for these cases are indicated in Fig. 9 by the heavy dashed

lines, together with those portions of the heavy full line which are common

to the several diagrams.

A prediction of the stress as a function of time at the interface

between the specimen and anvil bar may be determined from the Lagrange

diagram. Such stress-time relations for impact stresses of 13,400 lb/in.2 ,
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9,500 lb/in.2 , 7,500 ib/in.2 , and 3,850 lb/in.2 are shown in Figs. 10,

11, 12, and 13 respectively, together with the corresponding experimental

relations obtained from stress-time measurements. The plastic strain

distributions determined from the Lagrange diagram for the first three

of the above impact stresses are shown in Fis. 14, 15, and 16, together

with the measured strain distributions.

The plastic strain distributions shown in Figs. 14) 15, and 16

indicate that the maximum plastic! strains at the impact end of the speci-

men which are computed from the Lagrange diagram are not equal to the

measured strains. The measured plastic strain near the impact end of

the upecimen is greater than the maximum plastic strain computed from

the Lagrange diagram. A comparison of other plastic strain distributions

indicates that in nearly every case the measured maximum strain is greater

than the computed maximum strain. For this reason, strain as a function

of time during impact was determined experimentally at several positions

along the bar in an attempt to explain the discrepancy.

The strain in the specimen as a function of time was determined

during impact with the use of SR-4 resistance sensitive wire strain gages

cemented to the specimen. Gages were mounted in such a manner that the

circumferential strain was recorded. In this manner, tension strains

are measured. This was considered necessary since the reliability of

wire strain gages at large values of compressive strains is uncertain

(18). One channel of the recording system was used to determine stress-

time at the impact end of the specimen in the usual manner, and the

other channel was used for strain-time measurements, A reference timing

mark was simultaneously impressed on each oscilloscope screen trace of

stress-time and strain-time in order to establish the time at impact on

the strain-time record.

Four typical experimental strain-time records are shown in

Figs. 17, 18, 19, and 20. The strain-time relations are also determined

theoretically from the Lagrange diagram and shown in the figures for com-

parison. The results indicate that the maximum strain determined from

strain-time records near the impact end of the specimen is comparable

with the measured strain after impact. Furthermore, this maximum strain

is obtained during the initial loading of the specimen, and the strain

remains nearly constant after ',his maximum strain is reached.
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DISCUSSION OF RESULTS

The experimental results of this investigation indicate that

the stress-strain relation deduced from stress-velocity measurements wibh

the use of the theory of propagation of plastic strains lies above the

stress-strain relation determined from stress-plastic strain measurements.

Thus, for a given stress, the strain deduced from stress-velocity measure-

ments is less than the strain measured after impact. However, a dynamic

stress-strain relation determined from either stress-velocity measurements

or stress-plastic strain measurements lies considerably above the static

stress-strain relation.

The dynamic stress-strain relation cannot continue to represent

the behavior of the material for an indefinite time, and the stress and

strain must approach some equilibrium position on the static stress-strain

curve if the load is maintained long enough. Thus, the plastic strain

measured after impact may represent the strain associated with the wave

propagation process and an additional strain due to relaxation which

takes place after the initial impact. The stress-strain relation during

relaxation cannot be determined from the experimental data, but the over-

all magnitude of the maximum strain relaxation compatible with experimental

observations can be estimated.

The initiation of any additional plastic strain at the interface

between the anvil bar and specimen after initial impact must be accompa-

nied by elastic unloading waves propagating through the specimen and

anvil bar. Thus, any increase in strain after the initial strain must

be accompanied by a decrease in stress at the interface. However, the

experimental stress-time records indicate that during impact the stress

at the impact end of the specimen remains nearly constant up to the time

at which unloading waves originating from the free end of the specimen

arrive. This can be seen in Figs. 10, 11, 12, and 13. Furthermore,

any increase in strain which might take place following the passage of

the initial strain waves would be expected to produce a nonuniform dis-

tribution of permanent strain in the section of the specimen adjacent

to the impact end. That this is not the case is illustrated by the typi-

cal experimental permanent strain distribution relations shown in Figs.

14, 15, and 16. Furthermore, the strain-time records shown in Figs. 17

and 18 show that the full value uf the permanent strain near the impact
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end is attained during the passage of the initial plastic wave front. (The

rounding over in these records as the strain approaches its maximum value

is due to the limited high frequency response characteristics of the ampli-

fication system employed and does not represent any real effect in the

material.) For these reasons, it may be concluded that no appreciable

strain due to relaxation effects has taken place in the period of time

during which the impact stress is maintained in these experiments. (This

time may be seen from the Lagrange diagram in Fig. 9 to be from about

0.23 to about 0.33 millisec, depending upon the impact stress) Therefore,

some other explanation must be sought to explain the differences between

the dynamic stress-strain relations as determined from stress-velocity

measurements and from stress-permanent strain measurements.

The desired correlation of the experimental data may be obtained

by abandoning the assumption that a single dynamic stress-strain relation

exists which is capable of describing the behavior of the material for

all impact stresses. A family of stress-strain relations, each member

of which depends upon the impact stress, may be used to explain the dis-

crepancy between measured strain and strain values deduced from stress-

velocity measurements. Each member of this family of stress-strain rela-

tions must satisfy several conditions determined by the experimental

measurements. First, the end point of the curve must correspond to the

measured values of impact stress and permanent strain at the impact end

of the bar; that is, the curve must terminate on the stress-plastic strain

measurement relation shown in Fig. 5. This condition may be expressed

in terms of the wave velocity function

C* d6

associated with that particular stress-strain curve by means of the rela-

tion

/ C C dC (5)

where 0(t ) denotes the desired stress-strain relation. Second, the

particle velocity due to the impact as given by
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f c*(8 )a5(6

must be equal to the particle velocity for that particular impact stress

as determined experimentally. Third, for strains in the elastic region,

the wave velocity must be equal to the normal velocity of elastic waves

in long rods; namely,

for (. (7)

where S. is the elastic limit strain, and E is Young's modulus for the

materiel. Finally, the stress-strain relation must be such that by con-

structing a suitable Lagrange diagram based upon it, curves of permanent

strain distribution in the specimen may be obtained which agree with the

experimental strain distribution curves. It is not possible to express

this last condition in closed mathematical form Hence, it will not be

used explicitly, but it will be shown later that the stress-strain rela-

tions chosen lead to an improved agreement between predicted and meas-

ured strain distributions, particularly in regard to the distance traveled

by the maximum strain, 61, during thebyngth impact.

Thus, all of the explicit conditions to be satisfied by each

member of the desired family of stress-strain relations have been ex-

pressed in terms of the wave velocity as a function of strain, C*(6 ),

as given by Equations 5, 6, and 7 above. Once C*(t ) is determined, the

corresponding stress-strain relation may be readily determined by the

use of Equation 5 with arbitrary values of r and S replacing , and

& 1' Of course, these three conditions are insufficient to determine

C*(& ) unambiguously; hence, the form of the function must 'be chosen

somewhat arbitrarily. The assumed form of the wave velocity function is

C*( ) = C for 6

C*(C ) = C(6) + AC(6) for C, >C. 2S

with AC(S) =a(6 S .) (8)

where Co -##- is the elastic wave velocity,

C( )- is the wave velocity corresponding to t'be

experimental stress-plastic strain measure-

ment curve shown in Fig. 7,
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6, is an undetermined constant representing the elastic limit

strain on the desired stress-strain curve, and

4 is a second undetermined constant.

Both S. and t depend upon the final strain, 61, corresponding to each

individual member of the family of stress-strain curves to be determined.

Substitution of the assumed form of the wave velocity as given

by Equation 8 into Equations 5 and 6 yields two relations in the unknowns

6. and a . A trial and error solution was used to determine the values

of 4 and 4 corresponding to final strains of 2.0, 5.5, and 5.0 per cent.

The stress-strain relations are then computed from Equation 5. These are

shown in Fig. 21. The stress-strain relations determined from stress-

velocity measurements and from stress-plastic strain measurements are

shown for comparison.

The family of stress-strain relations deduced in the above manner

may now be compared with experimental results which are independent of the

data upon which the deduction is based; namely, from any particular member

of the family of stress-strain relations, the distance which the maximum

strain, 61' should propagate along the specimen may be predicted by con-

structing a suitable Lagrange diagram based upon that stress-strain rela-

tion. This predicted distance of propagation may then be compared with

the corresponding experimental value as determined from the measurements

of plastic strain distribution. The required Lagrange diagrams need

only be partially constructed to determine the desired propagation dis-

tance, and this reduces the labor involved by a large factor. The above

procedure has been carried out for the values of the maximum impact

train, of 2.0, 3.5, and 5.0 per cent. The partial Lagrange diagram

for the case 6 = 5 per cent is shown in Fig. 22. The results of all

these computations are given in Table III, together with the correspond-

ing propagation distances predicted from the original Lagrange diagram

deduced from stress-velocity measurements and the experimental distances

of propagation for the same values of 61. These results show that the

propagation distances computed from the stress-strain relations which

de'pend upon the final strain compare more favorably with the measured

values than the distances computed from stress-velocity measurements.
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Table III

PROPAGATION DISTANCES OF MAXIMUM STRAINS

From Plastic
Strain Distribution

Maximum Strain Measurements A B
Per Cent In. In. In.

2.0 5.0 7.0 5.9
3.5 4.0 6.2 5.3
5.0 5.0 5.8 5.0

A - From Lagrange diagram deduced from stress-velocity measurements.

B - From Lagrange diagrams deduced from stress-strain relations which

depend upon the final strain, 61.

The stress-strain relations which depend upon the final strain,

shown in Fig. 21, are consistent with the generally accepted idea that

stress-strain relations are progressively raised as the rate of loading

is increased. In this present case, the rate of loading increases as

the impact velocity (and corresponding impact stress, r1 , and final

strain 61) is increased. The reason for this is twofold. First, the

rise time of the stress at the impact surface decreases as the impact

velocity is increased, because the time required for the end surface of

the specimen to deform into conformity with the spherical end surface of

the anvil bar decreases for increasing impact velocity. Hence, the mean

loading rate given by the ratio of the impact stress to the stress rise

time increases with increasing impact velocity.

The behavior of a specimen subjected to a given impact cannot

(strictly speaking) be completely described on the basis of the appropri-

ate member of the family of stress-strain relations if it is assumed, as

indicated above, that the differences between the members of this family

of curves are due to differences in loading rates. This is simply due

to the fact that in such an impact the loading rate varies rather widely

with position along the specimen and with time at any given position.

In general, the loading rates decrease with increasing distance from

the impact surface. Thus, since different stress-strain relations corre-

spond to each loading rate, no single stress-strain relation can be em-

ployed, strictly speaking, to describe the behavior of the entire specimen.

It may be noted that the family of stress-strain relations determined.
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above were deduced from experimental data measured at the impacted end

of the specimens. Hence, these stress-strain relations correspond to

the highest loading rates present in the specimens. The stress rise

times at the impact surface in these experiments are estimated to be

in the range of 2 to 20 microsec, with the longer times corresponding

to lower impact velocities. Thus, the mean loading rates at the impact
892surface were probably in the range 2 x 10 to 7 x 10 lb/in.2 per sec.

A complete description of the wave propagation effects under

impact loading in a material exhibiting time-dependent mechanical proper-

ties must be based upon a complete stress-strain-time relation for that

material. One attempt at such a treatment has been given by Malvern (19).

Unfortunately, the particular form of the time dependence of the stress-

strain properties assumed by Malvern does not seem to be capable of pre-

dicting behavior which is consistent with the results of impact experi-

ments. The problem of finding functional relationships between stress,

strain, and time which provide for agreement between theory and experiment

and are at the same time mathematically feasible to use is probably very

difficult.

Fortunately, the complexities and difficulties of theoretical

treatment Just discussed are concerned with effects of rather minor magni-

tude in many materials, as Judged from experimental investigations. Thus,

the results of the present experiments indicate that the behavior of

annealed 2S aluminum under impact conditions may be predicted with good

accuracy, using a single time-independent dynamic stress-strain relation.

In this case, for example, a stress-strain relation which is an average

between the curve deduced from stress-velocity measurements and the curve

deduced from stress-plastic strain measurements could be used to predict

plastic wave propagation phenomena with good accuracy.

Qualitatively similar behavior under impact loading is to be

expected for materials which are similar to 2S aluminum in other respects.

Thus, pure metals and solid-solution alloys which exhibit the face-centered

cubic crystal structure may be expected to behave in the same general manner.

Examples of such materials are copper and austenitic stainless steel. How-

ever, low-carbon steel and probably other body-centered cubic metals be-

have quite differently under suddenly applied loads (15, 20).
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During the preparation of this report, a report of a similar

investigation by J. D. Campbell (21) was published. Campbell's experi-

ments differed from those reported here in that repeated impacts on the

same specimen were employed, and the impact velocities used did not cover

nearly as wide a range as in the present investigation. Nevertheless,

Campbell obtains a raised dynamic stress-strain relation for an annealed

aluminum alloy for strains up to 0.6 per cent which is very similar to

the results reported in this report. Campbell's data and analysis are

not sufficient to show that the dynamic stress-strain relation varies

slightly with impact strers.



SUMMARY

The results of this investigation show that the behavior of

annealed 2S aluminum under conditions of impact loading into the plastic

strain range can be represented to a good approximation by a single dynamic

stress-strain relation. This dynamic stress-strain relation lies above

the static stress-strain curve. The excess of dynamic stress over the

static values increases progressively with strain, reaching about 20

per cent of the static stress at a strain of 4.5 per cent.

However, the results also show that higher order effects can-

not be correlated with such a single dynamic stress-strain relation. A

detailed analysis of the experimental measurements by means of the von

KArmAn theory of propagation of plastic strains in long rods indicates

that the behavior of the material near the impact surface may be des-

cribed by a family of stress-strain relations. Each member of this family

of curves corresponds to a given impact stress, and the curves are arranged

consecutively in order of increasing impact stress. All of these curves

lie within a narrow region in the stress-strain plane.
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APPENDIX

The present theory of the propagation of longitudinal waves

of plastic deformation in long, thin bars was developed by von K~rm~n

(13, 14). The methods of integration and graphical solutions for problems

of strain propagation were developed by von KArmAn, Bohnenblust, Hyers,

and Charyk (16, 17). Since these reports are not readily available, a

summary of the graphical solution used in this investigation will be

given.

Let the stress-strain relation for the material be given by

a function of the form 0 = 0'(6 ) where r is the stress and 6 is the

strain. This relation holds for the first deformation of the material

beyond the elastic limit. If the load is decreased, the stress and strain

decrease according to Hooke's law.

Consider a long bar of the material in which one end of the

bar is suddenly put into motion by longitudinal impact. The character-

istic parameters which define the state of strain and motion of an element

in the bar are the following:

- = strain

= stress

V - = particle velocity

where x is the distance along the bar, and

u is the longitudinal displacement of a cross section.

The equation of motion of a small element of the rod, neglecting the

kinetic energy and shear stresses associated with the radial motion of

the bar, is given by

tz __
where,.4 is the mass density of the material. Using the relation for

the velocity of propagation of a plastic strain as shown by von K~rmAn (13),

the equation of motion becomes

39
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v c2
= ctj c X (9)

On the other hand, from the relations v = and it foldows

C) tt xLhi L

By using a tranoformation of' variables, the strain, £ , and the particle

vloc.ity, v, are introduced as independent variables. Then Equations 9

and 10 take th form

x :c2 C)t

- (n)
C) t a __x( )
i- v

The equations become more symmetrical by introduction of the function

J cdS . The equations become

)x J t

X c ayk, . (12 )

The process of propagation can be represented in a Lagrangean

plane ,;i h x and t as coordinates, and a velocity plane with ' tznd # as

c:oordinates. The Equations 12 have fixed characteristi7s in the v,p%

plane, They are given by the family of straight lines v -# = colstant

and v + constant. The Lagrange diagram serves as a mears oil repve.

S-,1t.LI;g the values of stress, particle velocity, and strai-a at any time

ana position along the specimen. The details of the ,,onstruction of t:te

Lagrange diagram shown in Fig. 9 are given below,

Trae relations c vs. 6 , 0 vs. 6 , # vs. .and # v. CT

, ploti-o:d from the engineering stress-strain curve ol' thc: matexiatL

%omn'r'i ion jt.eses will be taken to be positive, and pa.t:ic.le t:ic:-Aty

wU:1 be t.ak,:n to bt positive when the material moves lowatcd tfhE: right
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of the Lagrange diagram shown in Fig. 9. It is assumed that the behavior

of the material is characterized by the given stress-strain relation for

increasing or constant values of strain and that Hooke's law holds for

decreasing strain.

The Lagrange diagram consists of two regions: the plastic

region and the hysteresis region. In the plastic region, the quantity

v + p is constant along the characteristic of slope 1/c, while the

quantity v - # is constant along the characteristic of slope -i/C.

The plastic region is also described by the differential equations

6 -- -/* vand IC c2lv . Similarly, in the hysteresis
region, the quantity v + 0 is constant along the characteristic

of slope 1/c0 while the quantity v - A is constant along the
0 'co

characteristic -1/c . The hysteresis region is also described by the

differential equations -~ ./- 4 -and _/, AxV

The construction of the Lagrange diagram consists in determining the

characteristics in the plastic and hysteresis regions. The determination

of the boundary between the plastic and hysteresis regions allows the

characteristics in both regions to be constructed.

The construction of the Lagrange diagram is simplified if it

is assumed that the specimen is initially at rest and a moving anvil bar

strikes the end of the specimen. At time, t = 0, the anvil bar moving

with a velocity, V0 , strikes the specimen, and a series of plastic strains

are propagated toward the free end of the specimen. The particle velocity

at the end of the specimen is equal to the value of # corresponding to

the stress at the impact end. The values of r and v are determined from

the relation given by Equation 2 and the vs. 0- curve. The propaga-

tion velocity of the plastic strains vary from c0 for the "elastic front"

to c1 for the "plastic front" where c1 is determined from the # vs. c

curve.

At time, t = 1/c0 , where 1 is equal to the specimen length,

the elastic wave reaches the free end of the specimen and reflects as an

unloading "shock wave." This "shock wave" is stopped at a point, 2, which

is determined from the equation

2 r1 v2 c 13)
CO o0c
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where G 1 is the proportional limit of' the material,1
012 is the stress at the point 2, and

v2 is the particle velocity at the point 2.

Since Cr and v are known along each characteristic, the point 2 can be

readily determined.

The Lagrange diagram now consists of two regionsl: the plastic

region below the unloading wave and the hysteresis region above the un-

loading wave. The stress and particle velocity are discontinuous across

the boundary since the unloading "shock wave" is of finite magnitude.

The remaining portion of the boundary between the plastic and hysteresis

regions is considerably more complicated than the boundary obtained from

the unloading "shock wave." The stress and particle velocity are con-

tinuous across the remaining portion of the boundary between the plastic

and hysteresis regions, but in general their partial derivatives are not

continuous. Using the differential equation of motion and expressing

the fact that O7 and v are continuous across the boundary, the following
equation is obtained:

[2 (dX)2 - + c2) [ k ' (C2 [V)
(14)

where (V) denotes the value of the partial derivative on the hysteresis
Ax h

side,

denotes the value of the partial derivative on the plastic

side, and
dx is the slope of the boundary.

The method of solution of the 'boundary is dictated by this equation.

In the solution of the boundary on the right side of the Lagrange

diagram shown in Fig. 9, the plastic region is to the left of the boundary,

and the hysteresis region to the right. The boundary is assumed to be con-

structed up to a cross section, t = constant, passing through a point F

of the boundary (see Fig. 23). A characteristic, a , is chosen arbitrarily

in the hysteresis region, and the problem is to determine the end point,

P, of 0! where ( intersects the plastic region. The boundary is given

by the line FP. The plastic and hysteresis regions are then constructed
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up to the new cross section passing through P. The unknown point, P,

lies in one of five regions. A different method, determined by Equation

14, applies in each region, but in all cases the value of v - - . k

is known along the characteristic 01 . The five regions in which P may

lie are determined by the following conditions.

Region A (Fig. 23a) -1< A < .c A x 0

Choose a characteristic A along which v - co = km1

Along 13 v + =k 2  (15)

AlongU v -# k (16)

The value of v and 0 at P can be computed from Equations 15

and 16. The value of (r corresponding to is obtained from the tr-

curve. These values of v and 6 must be compatible with d.

Region B (Fig. 23b) A < - 14 x c

In this case, t- -j- 0 along the boundary from Equation

14. This implies that r + -_ (L) is constant along the boundary and,

therefore, equal to its value at F.

Choose a characteristic ak along which v -@ o kI.

Along the boundary 0' + X (dt) = k3  (17)

Along 4 v + $ k2  (18)

The constant value of v + 0 = k2 along the characteristic of

slope 1/c which abuts at P must be compatible with d and Equation 17.

Region C (Fig. 23c) W- >

Choose a characteristic ( along which v - O o  kl'

Along IS v + k2  (19)

At P, 0' = 0' and = a# determined from the previous
max m ax

boundary. The point P is determined from
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max + max k2 "kl"
/0 co ma

Region D (Fig. 23d) l/co< At. <

In this case = = 0 along the boundary from Equation 1.at 'x
+v dx

This implies that -E- + o (-) is constant along the boundary and, there-
/0  0 at

fore, equal to its value at F.

Choose a characteristic a along which v - = k
/1001

Along the boundary + - k (20)

AtP
max

The value of O*ax at P must be compatible with d and Equation 20.

Region E (Fig. 23e)

Choose a characteristic 4 along which v = k "

Along v +( 2

AtP 0. max

The following relation must hold

2 r
max-

mx = k2 - kl .

Finally, having found point, P, the Lagrange diagram is extended

up to the line, t = constant, passing through P. At P, 0", v, and have

been determined. The values of v ± and v a. are known along the

characteristics starting from P with the slopes ± 1/c and ±l/c0 respectively.

The characteristics are then plotuted in the plastic and hysteresis regions.

The boundary on the left side of the Lagrange diagram shown in

Fig. 9 is constructed in a similar manner. In this case, the plastic region
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is to tWe right of ' the boundary and the hysteresis region to the left of

the boumdary. A condition equivalent to Region A for the right boundary

is used to determine the left boundary.

T e hysteresis region on the left side of the Lagrange diagram

is extermded to the interface, x = 0, and an additional computation must

be made to determine the characteristics in the anvil, bar and specimen.

The cbazracteristics shown in Fig. 23 satisfy the following conditions:

0"Along av - - k (22)

Along , v + 9 =---: 223

Along 8 v k3  (24)

where - is the acoustic impedance of the anvil bar, and

/00 c0  is the acoustic impedance of the specimen.

In allcoases, the value of v - '= k is known along the character-

iatic' . Since the anvil bar remains elastic, k3 is given by

k3 = 2v - V (25)

where 00 is the velocity of impact. Tle value of k2 is determined from

Equations 22, 23, 24, and 25, giving

2V "Y

k2 - 0 - kI  -- ) (26)

where Y" is equal to /c° The stress and particle velocity at the

interfaa-e are given by

0" (k2 " k1 )
2 1) c (27)

k +k

v 1 2 (28)
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The values of " , v, and 0 are tabulated for each characteristic

intersection and determined boundary point. The values between these inter-

sections and points are determined by linear interpolation. Thus, the values

of 6, v, and for any time or position along the specimen can be deter-

mined directly from the Lagrange diagram.

The plastic strain distribution in the specimen after impact is

obtained from the Lagrange diagram. The highest value of reached at

various positions along the bar is determined at the plastic-hysteresis

boundary, and translated into 6 values from the 0- C curve. The strains

are then corrected for elastic recovery upon removal of load.

The strain-time relation at any position along the specimen is

similarly obtained from the Lagrange diagram. The values of 6 along a

line, x = constant, are determined by reading from the - £ curve,

the values of 6 corresponding to the values of .

The stress-time relation at the interface between the anvil bar

and specimen is determined from the Lagrange diagram along the line, x 0.
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